Курс Лекций. Теоретическая механика

Введение. Список литературы.
  1. Структура теоретической механики. Основы статики
  2. Условия равновесия произвольной системы сил.
  3. Уравнения равновесия твёрдого тела.
  4. Плоская система сил.
  5. Частные случаи равновесия твёрдого тела.
  6. Задача о равновесии бруса.
  7. Определение внутренних усилий в стержневых конструкциях.
  8. Основы кинематики точки.
  9. Естественные координаты.
  10. Формула Эйлера.
  11. Распределение ускорений точек твёрдого тела.
  12. Поступательное и вращательное движения.
  13. Плоскопараллельное движение.
  14. Сложное движение точки.
  15. Основы динамики точки.
  16. Дифференциальные уравнения движения точки.
  17. Частные виды силовых полей.
  18. Основы динамики системы точек.
  19. Общие теоремы динамики системы точек.
  20. Динамика вращательного движения тела.

 

Лекция 16. Дифференциальные уравнения движения точки.

Рассмотрим движение свободной материальной точки в инерциальной системе отсчёта в декартовых координатах. Из 2-го закона Ньютона:

 

причём, Fx, Fy, Fz – могут зависеть от координат, первых производных, времени: .

Если известен закон движения (например из кинематики):

,

то => Fx(t), Fy(t), Fz(t). Это первая (прямая) задача динамики точки.

Если известна сила, то для исследования движения необходимо интегрировать дифференциальные уравнения – это вторая (обратная) задача динамики точки.

 

Формы дифференциальных уравнений движения

1) 2-ой закон Ньютона – для количества движения.

2) Умножим на (векторно):

или - уравнение момента количества движения.

[Почему? – самостоятельно. Учесть ].

Производная по времени от момента количества движения геометрически равна моменту силы.

Подробная запись (координатная):

3) Умножим скалярно на элементарные перемещения :

 

.

- уравнение кинетической энергии.  

Дифференциал кинетической энергии точки равен элементарной работе суммы сил, приложенных к точке, на действительном перемещении.

О первых интегралах (законы сохранения).

Из дифференциальных уравнений: функция координат, их производных по времени, являющаяся постоянной в силу уравнений (то есть её производная по времени равна нулю) => называется первым интегралом.

Получим такие условия.

Если - первый интеграл, то и 

1) Если Fx = 0, то , - интеграл количества движения (закон сохранения количества движения).

2) Если (то есть проекция момента силы на ось z),

 

то из

,

- интеграл момента количества движения (закон сохранения момента количества движения).

3) Получим интеграл энергии.

.

Пусть правая часть есть полный дифференциал некоторой скалярной функции – потенциала силового поля .

Тогда:

.

 

 

Работа:

.

Чтобы было полным дифференциалом:

1) - то есть поле стационарно (не зависит от t).

2) , с условиями из высшей математики:

 

 

или

 

или

 

 

Иначе: если и , то и уравнение кинетической энергии будет в полных дифференциалах:

.

Интегрируя:

.

Введём потенциальную энергию:

.

Тогда: - интеграл энергии (закон сохранения механической энергии).

Если силовое поле потенциально и стационарно, то сумма кинетической и потенциальной энергий свободной материальной точки равна постоянной.

Е0 – механическая энергия; находится из начальных условий.

Энергия сохраняется, то есть консервируется => поле называется консервативным.

Покажем, что работа сил консервативного поля не зависит от вида траектории, а равна разности значений функции П в конце и начале перемещения (рис.51).

Рис.51.

 

Работа:

,

что и требовалось доказать.

.

Работа сил консервативного поля на замкнутом перемещении равна нулю (рис.52).

 

 

Рис.52.

 

Контрольные вопросы:

1. Сформулируйте прямую и обратную задачи динамики.

2. Напишите уравнение момента количества движения точки.

3. Что называется перовым интегралом дифференциального уравнения?

4. Какое силовое поле называется консервативным?

 

Hosted by uCoz